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NOMENCLATURE

outer beam diameter
inner beam diameter

vector from origin of xyz to origin of

L
xyz

magnitude of G

frustum height

payoff function to be minimized
penalty constant

length of support leg edge

vector from origin of XYZ to origin of
L
Xyz

vector from origin of XYZ to end point of
support leg edge

vector defining location of support leg

edge relative to origin of x'y'z’

vector from origin of XYZ to a point on
the frustum surface

perpendicular distance from the pipe cen-
terline to an arbitrary point on the cir
cumference of the small end of the
frustum

perpendicular distance from the pipe cen-
terline to an arbitrary point on the
frustum surface

minimum value of r ¢

maximum value of r,

radius of an arbitrary frustam circular
cross section
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outer beam radius

radius of the large end of the frustum
radius of the small end of the frustum
unit step function

vector directed along the support leg edge

orthogonal transformation matrix from
xyz to XYZ system

vector from origin of XYZ to origin of
Xyz

vector from origin of xyz to a point on
the frustum surface

width of a support leg

coordinate system with origin at the pipe
center

coordinate system fixed to the frustum

coordinate system fixed to the support
plate

perpendicular distance from the large end
of the frustum to an arbitrary cross-
sectional plane

Euler rotation angles

angle measured in a cross-sectional plane
of the frustum

column vector
x-coordinate of a vector

vector in XYZ coordinates




AN ITERATIVE PROCEDURE FOR ALIGNMENT
IN UNDERGROUND NUCLEAR TESTING

by

E. A. Kern

ABSTRACT

A new method is presented for determining the mounting geometry for a
frustum within the tunnel of an underground nuclear testing site. This method
is based on a sequence of linear iterations in conjunction with a Davidon
iterator for finding the minimum of a function of several parameters. Success-
ful convergence of the method has been demonstrated on a time-sharing CDC
6600 computer. We believe this method could be generalized to other similar
alignment problems.

I. INTRODUCTION

In the past, difficult geometric alignments associated
with experiment packages in underground nuclear tests
have been accomplished at the Los Alamos Scientific
Laboratory by tedious drafting layouts. Recently, it was
decided to attempt a computer solution of an extremely
difficult alignment problem involving the placement of
the frustum of a cone in the test tunnel. Early in the
analysis it was concluded that an iterative-type approach
would offer the best solution for this problem. Using a
series of linear iterators in conjunction with a Davidon
iterator, we successfully solved the problem with a CDC
6600 time-sharing computer system. This report describes
the problem and presents the method of solution. To
avoid security classification of this report, specific dimen-
sions and computer results are not included.

I. DESCRIPTION OF THE PROBLEM GEOMETRY Test pipe

A frustum of a cone is mounted in the test pipe as
shown in Fig. 1. The beam diameters d; and d, depend Fig, 1.
Location of frustum within a radiation pattern.

*W. C. Davidon, “Variable Metric Method for Minimization,” AEC
Research and Development report ANL-5990 (1959).



on the distance from the radiation source. The frustum is

to remain in contact with the large or outer beam and is

to be tangent at some point to the small or inner beam.
This inner beam tangency requirement is imposed so that
the frustum does not interfere with experiments farther
down the test pipe. In addition, the centerline of the
frustum is to be inclined at some given angle ¢ with the
test pipe centerline. The frustum is mounted on a flat
plate that, in turn, is supported on the wall of the test
pipe by four support legs perpendicular to the mounting
plate. The orientation and location of the frustum relative
to the mounting plate and the location of the support legs
relative to the mounting plate are fixed quantities (see
Fig. 2). The basic problem is to determine the mounting
locations and the dimensions of the four support legs on
the test pipe so that the frustum satisfies the required
alignment geometry.

1II. ITERATIVE SOLUTION OF THE FRUSTUM
ALIGNMENT PROBLEM

The first step in the solution is to determine how the
frustum should be located and aligned relative to the
inner and outer beams. For this purpose we define an
XYZ-coordinate system with origin at the pipe center,
with the Z-axis directed along the pipe centerline and the
X-axis directed vertically upward (see Fig. 3). We also
define an xyz-coordinate system fixed to the frustum
with the x- and y-axes in the plane of the frustum base
(large end of frustum) and the origin at the point where

Frustum

Mounting plate
~—Support leg

\

Fig. 2.
Frustum mounting geometry.

the outer beam and the frustum base are tangent (see Fig.
3). The origins of the XYZ and xyz systems lie in the
same cross-sectional plane of the pipe. The frustum is
shown in Fig. 3 at the bottom of the pipe with the x-, y-,
and z-axes respectively parallel to the X-, Y-, and Z-axes
to simplify the geometry of the figure.

When the frustum is located and oriented correctly,
the origin of the xyz system will not generally lie at the
bottom of the pipe nor will the x-, y-, and z-axes be
parallel to the X-, Y-, and Z-axes, respectively.

Because the xyz-coordinate system is fixed to the
frustum, the orientation and position of the frustum will
be determined by the origin and orientation of the
xyz-coordinate system relative to the XYZ system. If the
geometry of Fig. 3 isused as a starting point, the orienta-
ton and position of the xyz-coordinate system can be
defined by a translation and three Euler angle rotations in
the following manner.

(1) Translate the origin of the xyz system through the
angle § along the large beam circumference and simultane-
ously rotate the coordinate system about the z-axis so
that the x-axis still points toward the center of the pipe
(Fig. 4). In effect, the xyz system has been translated and
rotated through an angle § in the negative sense (right-
hand rule) about the z-axis.

(2) Rotate the new xyz system in a negative sense
about the x-axis through the angle 8.

(3) Rotate the new xyz system in a positive sense
about the y-axis through the angle 7.

This translation through the angle 6§ and the Euler
rotation angles 8, §, and v defines the position and orien-
tation of the xyz system (hence the frustum) relative to

Fig. 3.
Definition of the XYZ- and xyz-coordinate systems.
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Fig. 4.
Displacement and rotation of the xyz system
through the angle 0.

the XYZ system, Thus, the entire alignment procedure
centers around the determination of the angles 8, §, and ¥
so that the frustum satisfies the specified requirements,

(1) The frustum base and the end of the frustum
opposite the base are tangent to the large beam.

(2) The centerline of the frustum is inclined to the
pipe centerline at some angle ¢.

(3) The surface of the frustum is tangent at some
point to the inner beam.

A direct method for finding the angles 6, §, and 7y to
satisfy the above three requirements did not immediately
present itself; therefore, the following iterative approach
was used,

(1) Estimate the pipe station at which the smaller end
of the frustum (end opposite the base) is tangent to the
outer beam and the pipe station at which the surface of
the frustum is tangent to the inner beam. This establishes
an estimate for the beam diameters at the corresponding
tangency points,

(2) Guess the angles 8, 8, and v.

(3) Perform a linear iteration of the angle v so that the
end of the frustum opposite the frustum base is tangent
to the outer beam.

(4) Perform a linear iteration on the angle § so that
the centerline of the frustum is inclined by the desired
angle ¢ to the pipe centerline. For each new angle §,
return to step 3 and reiterate on the angle .

(5) Perform a linear iteration on the angle 8 so that
the surface of the frustum is tangent to the inner beam at
some point. For each new angle 6, return to steps 3 and 4
to reiterate on the angles 7y and §.

(6) Compute the actual pipe stations where the
smaller end of the frustum is tangent to the outer beam
and the surface of the frustum is tangent to the inner

beam. If the actual pipe statons differ by more than
0.0001 in, from the estimated pipe stations, set the esd-
mated pipe stations equal to the actual pipe stations and
return to step 2 of the iteration.

The above iteration procedure has proved successful in
determining the angles 6, $, and <y and thus establishes the
location and orientation of the frustum, The mathemat-
cal details associated with each of the above steps were
purposely omitted so as not to obscure the basic iterative
procedure.

The beam diameters along the pipe for both the outer
and the inner beams increase as the distance down the
pipe increases, Therefore, we must know the exact pipe
stations at which the tangency points described in step 1
occur so that the outer and inner beam diameters can be
established at these points. Because the pipe stations for
the tangency points are not known initially, they must
be estimated and then iterated. Note in step 6 that the
iteration loop on the pipe stations is closed by setting the
estimated pipe stations equal to the corresponding actual
pipe stations at which the tangency points are computed
to occur.

Very simple linear iterations are used in steps 3, 4, and
5 to determine the angles v, §, and 8. Consider a linear
iteration on the angle § where it is desired to obtain a
specific inclination angle ¢ as an example. Let

d = ¢ desired - ¢ actual,

d,, = value of d on the nth iteration,
and

By = value of §§ on the nth iteration.

To compute § for the (n+1)th iteration, compute

an - Bn -1
slope = T - 1)

n n -1

Assume that this slope remains constant over the (n+l)th
iteration, i.e.,

) -8

slope = n»21 _n 2)

ne+l n

It is desired that d,,; be zero on the (n+1)t? iteration.
Setting dp, 4 = 0 in Eq. (2) and solving for 8, ; gives

B = B - slope (dn) . (3

n+1



Iteration for § continues until the absolute value of d
becomes less than a prespecified tolerance. The linear
iterations on 9 and @ are performed in the same manner.

In step 3 of the iteration, we must determine the angle
7 so that the small end of the frustum (end opposite the
base) is tangent to the outer beam ci:sumference. This is
accomplished by defining a vector R, which locates a
point on the circumference of the small end of the frus-
wm relative to the center of the pipe (see Fig. 5). Let the
X-, Y-, and Z-components of R be denoted by Ry,Ry,
and Ry, respectively, and let r, be the distance of a given
point on the small end of the frustum from the pipe
center. Then it follows that

T, = (sz + n’{"")x's . 4)

The value of r_ will vary as R moves around the small end
of the frustum. The maximum value of r, ryp, .., defines
the point on the small end of the frustum that is farthest
from the center of the pipe. If r ., ,, is smaller than the
outer beam radius, the small end of the frustum lies inside
the outer beam, whereas if r.;,, is larger than the outer
beam radius, a portion of the small end of the frustum lies
outside the outer beam. For the small end of the frustum
to be tangent to the outer beam, the ., ., must be equal
to the outer beam radius. Linear iteration on 7 is there-
fore performed until r is within 10°® in. of the outer
beam radius.

cmax

Fig. 5.
Vector R from pipe center to point on circumfer-
ence of small end of frustum.

We compute r..... for a given angle v as follows.

From Fig. 5 we have

-

- >
=U+V (5)

where

U = the vector from the origin of the XYZ system to
the origin of the xyz system

and

-
\'%

the vector from the origin of the xyz system to
a point on the small end of the frustum.

The vector U is easily established because the origin of the
xyz system lies in the XY plane. Referring to Fig. 5 and
letting rg be the radius of the outer beam, we note that

Uy =-r, cose 6)
and
U, = T, sino . N

The vector V is most casily determined in the xyz system
and is then transformed into the XYZ system. Here we
consider Fig. 6 where the vector Vis s shown equivalent to
the sum of the three vectors, Vl, Vz, and V3, and the

Fig. 6.
The vector V locating an arbitrary point on the
small end of the frustum relative to the xyz system.
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radii of the large and small ends of the frustum are given
by r, and r,, respectively. The angle  is measured in the
plane defined by the small end of the frustum and is
measured from a line parallel to the x-axis to the vector
V3 Thc frust_l)xm height is denoted by h. Thus, the vectors
V, , Vz, and V3 are as follows in the xyz system:

rl (] :!'2 cos ¥
-+ > .
Vl-o.vz-o.vs—rzsmd: - (8)
o h "o
- Because
> <> >
VeV VZ + Vg
it follows that
r:l + r2 cos ¢}
-> .
[V]xyz r, sin ¥ )
h

To find the vector f{’ we must transform the coordinates
> < . .

of the vector V into the XYZ system. The orientation of

the xyz system relative to the XYZ system is defined by

the Euler angles 8, §, and 7. This then defines an orthog-

onal transformation matrix T that transforms the coordi-

nates of the vector V from the xyz system to the XYZ

system, i.e.,
Y
[v]XYZ =T [v]xyz (10)
where
P, Py Py

and

p1 = cos @ cosy-sin @ sin § sin vy,

p2 = -sin @ cos % - sin 8 sin y cos 6,
P3 = -sin 7y cos f,

Pa = cosfBsin 0,

pPs = cos @ cosf,

pe = -sinf,

p7 = cosfsiny +sin 8 smB cos v,
ps = -sin 8 sin ¥ + cos @ sin § cos 7,

and

Po = cosycosf.
Substituting Egs., (6), (7), (9), and (10) into Eq. (5)
gives for the vector R in XYZ coordinates

-cos @ T, + r2 cos

[ﬁ]sz =T,|sinel + T T, sinbw (11)

o h

The X- and Y-components of the vector R can then be
used in Eq. (4) to solve for r..

The point on the small end of the frustum that yields
T.max is found by a one-dimensional search on the param-
eter . Iteration on the Euler angle v is complete when
T.max iS €qual to the outer beam radius. This is equivalent
to the small end of the frustum being tangent to the
circumference of the outer beam,

In step 4 of the iteration, angle § is set to yield the
desired angle ¢ between the pipe and the frustum axes.
Now the frustum axis is parallel to the z-axis. Thus the
cosine of the angle between the pipe and the frustum axes
will be equal to the dot product of the unit vectors
directed along the Z- and z-axes. This is equivalent to
element py of the matrix T. Hence,

¢ = cos™? (cos vy cos B) . (12)

Linear iteration is performed on the angle § until the
actual inclination angle ¢ is equal to within 10°® rad of
the desired inclination angle.

With 7 and § determined, the angle § is computed by a
linear iteration so that the surface of the frustum is
tangent to the inner beam. This tangency point is deter-
mined in 2 manner similar to that used for determining
the tangency point at the outer beam and small end of the

iP5



frustum, Here, however, the tangency point can lie at any
point on the frustum surface. Let R be the vector directed
from the origin of the XYZ system to any point on the
frustum surface. The geometry of Fig. 5 is applicable if
the vector R is not restricted to the small end of the
frustum. Let U be the vector joining the XYZ and xyz
systems, and let V be the vector from the origin of the
xyz system to the end point of the vector R. Equations
(5)«7) are applicable here, The vector V can be ex-
pressed in terms of xyz coordinates by a consideration of
the frustum shown in Fig. 7. Again V is equal to the sum
of the vectors V;, V3, and V3. The vector V; is as
defined in Eq. (8). The vector V, is still directed along
the z-axis but it is now of variable length Zg, ie.,

-
[ o -

13)

N O O

The vector _\-’)3 lies in a plane parallel to the xy plane and
is directed from the frustum centerline to the frustum
surface. Let ry be the radius of the frustum at a cross
section lying at a distance z, from the frustum base. Then

T =T, - 2 , (14)

N Fig, 7.
The vector V locating an arbitrary point on the
frustum surface relative to the xyz system,

where

r; = the radius of the frustum base (large end),

r, = the radius of the small end of the frustum,
and
h = the height of the frustum.

With ¢ defined as the angle in a plane parallel to the xy
plane and measured between a line parallel to the x-axis
and the vector V,, it follows that

rf cos ¥

*> .
I:Vs] xyz = |1 sin 7]

(15)

Sum_x{ling the vectors {’)1 from Eq. (8), {"2 from Eq._£13),
and V3 from Egs. (14) and (15) gives for the vector V

[v]xyz "El " % L rz] sin ¥

@1e6)

The vector R can now be obtained by transforming the
vector V bz) way of the matrix T and adding the result to
the vector U defined by Egs. (5) and (6), i.e.,

r— -

-cos

[;+r1-zp£——lr1-r2 -JCOS_J
h

T, -1
ﬁ]XYZSro sine«tTEI-zp g—lh—zl:lsintb

an
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As seen from Eq. (17), for fixed angles 8, B, and v, the
vector R is a function of the distance z_ and the angle .
We now find that point on the frustum surface that lies
closest to the pipe centerline. With

r.¢ = to the perpendicular distance from the pipe
centerline to the frustum surface

it follows that
2 2\*%
e = (% + /) as

The minimum value of Lot Tefmin’ is the minimum dis-
tance between the pipe centerline and the frustum sur-
face. Thus, if T fmin is less than the inner beam radius, a
portion of the frustum surface lies inside the inner beam,
whereas if r o . is greater than the inner beam radius,
there is no common point between the frustum and the
inner beam. When r_. . is equal to the inner beam
radius, the inner beam and the frustum surface are tan-
gent. Therefore, we must computer ¢ . .

For fixed angles 0, B, and 7 the distances R, and R
are functions of z_ and y. Hence, T tmin can be found by
minimizing r_, with respect to the parameters z, and ¢
subject to the constraint that the minimum point actually
lies upon the frustum. Let J be the function of z, and ¥

to be minimized. Then
A 2\%
J (Rx * Ry )

N K[s (2, - 1) (zp-h)z + s (z) zpz:' , 19

where
K = large penalty constant
and
. 1f>0
s(f) = step function = 0f<0}'

Note from Eq. (19) that the function ] is composed of
the quantity to be minimized (r‘:f =1f§x§ + Ry! )and a
penalty term to ensure that the minimum does not lie at
some value of z_, which is not on the frustum surface.
The values of z_ and Y, which minimize the function ]
and conscqucntfy r.g, are obtained with the aid of a
Davidon iterator. The Davidon iterator is a second-order
method for finding the minimum of a multiparameter
function. Rapid and reliable convergence to the minimum

can be obtained with this iterator for the type function J
defined by Eq. (19). With the minimum of r ¢ computed
in this way, linear iteration on the angle 6 is executed
until the difference between rqfy;, and the inner beam
radius is less than 10°¢ in,

IV. COMPUTATION OF THE FRUSTUM SUPPORT
GEOMETRY

Exact determination of the frustum location and orien-
tation has been outlined above. As shown in Fig. 2, the
frustum is mounted on a flat plate that, in turn, is
supported by four support legs welded to the pipe wall.
The location and orientation of the frustum relative to
the support plate and the location of the legs relative to
the support plate are prespecified quantities. We must
determine the dimensions of the support legs and the
points at which the support legs should be welded to the
pipe.

A typical support leg is shown in Fig. 8. The top of the
support leg is fastened perpendicular to the support plate
while the bottom surface of the support leg rests on the
inside surface of the test pipe. All cross-sectional planes of
the support leg that are parallel to the top are squares of
width w. We must find the lengths &;, 2,, %3, and 2, of
the support leg edges so that the support legs will rest
firmly on the pipe surface and at the same time provide
the proper location and orientation of the frustum. In
addition, the points at which these edges intersect the
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Fig. 8,
Support leg geometry,



pipe are needed to locate the support platc properly
within the pipe.

A support leg edge, along with the support plate and
pipe,is shown in Fig. 9. The XYZ-coordinate system,with
origin at the pipe center and the Z-axis directed along the
pipe centerline,is identical to the XYZ system previously
defined. The x'y'z'-coordinate system shown in Fig. 9 is
fixed to the support plate with the origin of the system
lying in the center of the plate bottom. The x'-axis is
normal to the plate surface and the z'-axis is directed
along the centerline of the bottom surface, The origins of
the XYZ and x'y'z’ systems lie in the same cross-sectional
plane of the pipe. The x'y'z’ system can be derived from
the xyz system by translating the origin of the xyz system
from the bottom of the frustum to the bottom of the
support plate and by rotating this translated system about
the y-axis through some angle 1 so that the z'-axis lies in
the bottom surface of the plate. Thus, the Euler angles
that define the orientation of the x'y'z’ system relative to

Pipe center

Support plate

Fzg 9.
Vectors 0 P Q, and S defining the extremities of a
support leg edge relative to the support plate and
the pipe center.

the XYZ system are 0, 8, and ', where 8 and § are the
same as defined in Sec. 1T and

Y'=y+n | (20)

Let T' be the matrix that transforms the coordinates of a
vector from the x'y’z’ system to the XYZ system. Then T’
can be obtained from the matrix T defined in Sec. IiI by
replacing y witl_1> 7.

Thc vector O shown in Fig. 9 locates the origin of the
x'y'z' system relatxve to the XYZ system, and the sum of
the vectors Q and S locates the extremlty of the support
leg edge relative to the origin of the x'y'z’ system. The
vector P locates the extremity of the edge relative to the
XYZ system. Therefore, the point at which the_)edge
intersects the pipe is defined by the coordmatcs of P, and
the length of the edge is equal to the length of S

We must determine the length of the vector S so that
the end point of S touches the inner wall of the pipe. This
is equivalent to requiring that the radial distance of the
end point of S from the center of the pipe be equal to the
pipe radius. Let Py and Py be the X- and Y-coordinates,
respectively, of P. Then the radial distance from the
center of the pipe will equal (P% +_l:§,)m. Hence, we must
determine the length of the vector S so that

pipe radius = (sz + PYZ)A . (21)

From F_g 9 we know that P is the sum of the vectors
0 Q, and S, i.e.,

P =3 + 3+ 8. (22)

The vector ] can be represented as the sum of the vectors
U and G (see Fig. 10), where the vector U is directed from
the origin of XYZ to the origin of xyz, and the vector G ls
directed ftom_)the origin of xyz to the origin of x'y'z’,
Both vectors U and lie in the XY plane with the X- and
Y-coordinates of U given by Egs. (6) and (7). The vector
G has a spec1fied length equal to g and is directed along
the negative x-axis, i.e.,

[E]x'y‘z' 1 °l- (23)
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Pipe center

Fig. 10._
Representation of the vector O as the vector sum of
U and G.

Transforming the vector ¢ into the XYZ system by means
of the matrix T' and forming the vector 0 as the vector
sum of U and G gives

-x, cos 6 -g
= i t 24
[3] XYZ r, sinef + T o (24)
o o

The vector a shown in Fig. 9 provides the location of the
support edge relative to the plate. Hence, the y'- and
z'-coordinates of Q, Q,,, and Q, are readily obtainable as
input to the allgnment problem. 0bv10usly the

-component of Q will be zero because Q lies in the
bottom of the support plane and x' is normal to this
plane, i.e.,

(]

Q.| -

Q¢

(25)

[6] xty'z!

where Q' and Q.+ are known values.

The vector S has a component only in the negative x’
direction because this vector is normal to the support
plate and therefore normal to the y'z’ plane. Hence, S can
be represented in the x'y'z’ system as follows:

(26)

where L equals the unknown length of the vector S

Transforming Q and S from Eqs (25) and (26), respec-
tively, by means of the matrix T’ and subsu_tlmng these
transformed vectors along with the Yector O from Eq,
(24) into Eq. (22) gives for the vector P

~T, ¢€os ] r -g-L

[*] xvz “| %o @7

sin ¢ + T!

With the expression for P as above, a linear iteration on
the length L is carried out until Eq. (21) is satisfied to
within 10° in. This yields the desired length of the
support leg edge. Also, the coordinates of the vector P
define the point where the support leg edge touches the
inside of the test pipe.




V. CONCLUSIONS

This iteration technique has worked successfully in
solving the problem of aligning the frustum of a cone in
the test tunnel of an underground nuclear testing site.
Thus, the feasibility of using an iterative approach in
conjunction with a high-speed digital computer to handle
complex geometric alignment problems of this nature has
been proved. Rapid convergence of the iterator was expe-
rienced with the total computation time on the CDC
6600 computer being less than 3 sec.

Single precision arithmetic was used throughout the
computation to conserve computer core storage on the
time-sharing system, For the CDC computer this provides

EE:276(85)

10

about 14 decimal digits of accuracy. The Davidon iterator
had to be “tuned” to operate within these accuracy
limitations because 14 decimal digits are only marginally
sufficient to ensure reliable convergence of this type of
iterator. Double precision arithmetic, which essentially
doubles the number of accurate decimal digits, would
have eliminated these difficulties.
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